Publications

Detailed Information

Identification and Characterization of PSEUDO-RESPONSE REGULATOR (PRR) 1a and 1b Genes by CRISPR/Cas9-Targeted Mutagenesis in Chinese Cabbage (Brassica rapa L.)

Cited 5 time in Web of Science Cited 5 time in Scopus
Authors

Kim, Nan-Sun; Yu, Jihyeon; Bae, Sangsu; Kim, Hyang Suk; Park, Soyoung; Lee, Kijong; Lee, Soo In; Kim, Jin A.

Issue Date
2022-07
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Citation
International Journal of Molecular Sciences, Vol.23 No.13, p. 6963
Abstract
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.The CRISPR/Cas9 site-directed gene-editing system offers great advantages for identify-ing gene function and crop improvement. The circadian clock measures and conveys day length information to control rhythmic hypocotyl growth in photoperiodic conditions, to achieve optimal fitness, but operates through largely unknown mechanisms. Here, we generated core circadian clock evening components, Brassica rapa PSEUDO-RESPONSE REGULATOR (BrPRR) 1a, 1b, and 1ab (both 1a and 1b double knockout) mutants, using CRISPR/Cas9 genome editing in Chinese cabbage, where 9–16 genetic edited lines of each mutant were obtained. The targeted deep sequencing showed that each mutant had 2–4 different mutation types at the target sites in the BrPRR1a and BrPRR1b genes. To identify the functions of BrPRR1a and 1b genes, hypocotyl length, and mRNA and protein levels of core circadian clock morning components, BrCCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) and BrLHY (LATE ELONGATED HYPOCOTYL) a and b were examined under light/dark cycles and continuous light conditions. The BrPRR1a and 1ab double mutants showed longer hypocotyls, lower core circadian clock morning component mRNA and protein levels, and a shorter circadian rhythm than wildtype (WT). On the other hand, the BrPRR1b mutant was not significantly different from WT. These results suggested that two paralogous genes may not be associated with the same regulatory function in Chinese cabbage. Taken together, our results demonstrated that CRISPR/Cas9 is an efficient tool for achieving targeted genome modifications and elucidating the biological functions of circadian clock genes in B. rapa, for both breeding and improvement.
ISSN
1661-6596
URI
https://hdl.handle.net/10371/185339
DOI
https://doi.org/10.3390/ijms23136963
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share