Publications

Detailed Information

Efficient gene delivery into the embryonic chicken brain using neuron-specific promoters and in ovo electroporation

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

Jung, Kyung Min; Park, Kyung Je; Kim, Young Min; Han, Jae Yong

Issue Date
2022-09
Publisher
BioMed Central
Citation
BMC Biotechnology, Vol.22 No.1, p. 25
Abstract
© 2022. The Author(s).BACKGROUND: The chicken in ovo model is an attractive system to explore underlying mechanisms of neural and brain development, and it is important to develop effective genetic modification techniques that permit analyses of gene functions in vivo. Although electroporation and viral vector-mediated gene delivery techniques have been used to introduce exogenous DNA into chicken embryonic cells, transducing neurons efficiently and specifically remains challenging. METHODS: In the present study, we performed a comparative study of the ubiquitous CMV promoter and three neuron-specific promoters, chicken Ca2+/calmodulin-dependent kinase (cCaMKII), chicken Nestin (cNestin), and human synapsin I. We explored the possibility of manipulating gene expression in chicken embryonic brain cells using in ovo electroporation with the selected promoters. RESULTS: Transgene expression by two neuron-specific promoters (cCaMKII and cNestin) was preliminarily verified in vitro in cultured brain cells, and in vivo, expression levels of an EGFP transgene in brain cells by neuron-specific promoters were comparable to or higher than those of the ubiquitous CMV promoter. Overexpression of the FOXP2 gene driven by the cNestin promoter in brain cells significantly affected expression levels of target genes, CNTNAP2 and ELAVL4. CONCLUSION: We demonstrated that exogenous DNA can be effectively introduced into neuronal cells in living embryos by in ovo electroporation with constructs containing neuron-specific promoters. In ovo electroporation offers an easier and more efficient way to manipulate gene expression during embryonic development, and this technique will be useful for neuron-targeted transgene expression.
ISSN
1472-6750
URI
https://hdl.handle.net/10371/185602
DOI
https://doi.org/10.1186/s12896-022-00756-4
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share