Publications

Detailed Information

Scene conditional background update for moving object detection in a moving camera

Cited 29 time in Web of Science Cited 46 time in Scopus
Authors

Yun, Kimin; Lim, Jongin; Choi, Jin Young

Issue Date
2017-03
Publisher
Elsevier BV
Citation
Pattern Recognition Letters, Vol.88, pp.57-63
Abstract
This paper proposes a moving object detection algorithm adapting to various scene changes in a moving camera. In the moving camera scene, both backgrounds and objects are moving while the level of illumination in general varies frequently. To handle these scene changes, we propose a scene conditional background update scheme that adaptively builds the background according to how the scene changes. First, we estimate the three scene condition variables of background motion, foreground Motion and illumination changes for an awareness of the scene condition. We then compensate for the camera movement and update the background model in different ways according to the scene condition. Lastly, we propose a new foreground decision method with a foreground likelihood map, two thresholds, and a watershed algorithm to generate a spatially connected foreground region. We validate the effectiveness of our method quantitatively and qualitatively with ten videos in various scene conditions. The experimental results show that our method adapts itself to dynamic scene changes and outperforms state-of-the-art methods. (C) 2017 Elsevier B.V. All rights reserved.
ISSN
0167-8655
URI
https://hdl.handle.net/10371/191056
DOI
https://doi.org/10.1016/j.patrec.2017.01.017
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share