Publications

Detailed Information

Floatable photocatalytic hydrogel nanocomposites for large-scale solar hydrogen production

DC Field Value Language
dc.contributor.authorLee, Wang Hee-
dc.contributor.authorLee, Chan Woo-
dc.contributor.authorCha, Gi Doo-
dc.contributor.authorLee, Byoung-Hoon-
dc.contributor.authorJeong, Jae Hwan-
dc.contributor.authorPark, Hyunseo-
dc.contributor.authorHeo, Junhyeok-
dc.contributor.authorBootharaju, Megalamane S.-
dc.contributor.authorSunwoo, Sung-Hyuk-
dc.contributor.authorKim, Jeong Hyun-
dc.contributor.authorAhn, Kyung Hyun-
dc.contributor.authorKim, Dae-Hyeong-
dc.contributor.authorHyeon, Taeghwan-
dc.date.accessioned2023-06-09T00:18:39Z-
dc.date.available2023-06-09T00:18:39Z-
dc.date.created2023-06-05-
dc.date.created2023-06-05-
dc.date.created2023-06-05-
dc.date.created2023-06-05-
dc.date.created2023-06-05-
dc.date.created2023-06-05-
dc.date.issued2023-07-
dc.identifier.citationNature Nanotechnology, Vol.18 No.7, pp.754-762-
dc.identifier.issn1748-3387-
dc.identifier.urihttps://hdl.handle.net/10371/192802-
dc.description.abstractStoring solar energy in chemical bonds aided by heterogeneous photocatalysis is desirable for sustainable energy conversion. Despite recent progress in designing highly active photocatalysts, inefficient solar energy and mass transfer, the instability of catalysts and reverse reactions impede their practical large-scale applications. Here we tackle these challenges by designing a floatable photocatalytic platform constructed from porous elastomer-hydrogel nanocomposites. The nanocomposites at the air-water interface feature efficient light delivery, facile supply of water and instantaneous gas separation. Consequently, a high hydrogen evolution rate of 163 mmol h(-1) m(-2) can be achieved using Pt/TiO2 cryoaerogel, even without forced convection. When fabricated in an area of 1 m(2) and incorporated with economically feasible single-atom Cu/TiO2 photocatalysts, the nanocomposites produce 79.2 ml of hydrogen per day under natural sunlight. Furthermore, long-term stable hydrogen production in seawater and highly turbid water and photoreforming of polyethylene terephthalate demonstrate the potential of the nanocomposites as a commercially viable photocatalytic system. Floatable hydrogel nanocomposites, with facile intercalation of various photocatalysts, effectively produce hydrogen. The easily scalable nature of the nanocomposites demonstrates the practical application of this new type of photocatalytic platform.-
dc.language영어-
dc.publisherNature Publishing Group-
dc.titleFloatable photocatalytic hydrogel nanocomposites for large-scale solar hydrogen production-
dc.typeArticle-
dc.identifier.doi10.1038/s41565-023-01385-4-
dc.citation.journaltitleNature Nanotechnology-
dc.identifier.wosid000978222400002-
dc.identifier.scopusid2-s2.0-85153702958-
dc.citation.endpage762-
dc.citation.number7-
dc.citation.startpage754-
dc.citation.volume18-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorAhn, Kyung Hyun-
dc.contributor.affiliatedAuthorKim, Dae-Hyeong-
dc.contributor.affiliatedAuthorHyeon, Taeghwan-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusENERGY-CONVERSION-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusNANOSTRUCTURES-
dc.subject.keywordPlusGENERATION-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share