Publications

Detailed Information

Electrochemically generated electrophilic peroxo species accelerates alkaline oxygen evolution reaction

DC Field Value Language
dc.contributor.authorLee, Hyeon Seok-
dc.contributor.authorShin, Heejong-
dc.contributor.authorPark, Subin-
dc.contributor.authorKim, Jiheon-
dc.contributor.authorJung, Euiyeon-
dc.contributor.authorHwang, Wonchan-
dc.contributor.authorLee, Byoung-Hoon-
dc.contributor.authorYoo, Ji Mun-
dc.contributor.authorAntink, Wytse Hooch-
dc.contributor.authorLee, Kangjae-
dc.contributor.authorLee, Seongbeom-
dc.contributor.authorNa, Geumbi-
dc.contributor.authorSuh, Kangmin-
dc.contributor.authorKim, Young Seong-
dc.contributor.authorLee, Kug-Seung-
dc.contributor.authorYoo, Sung Jong-
dc.contributor.authorSung, Yung-Eun-
dc.contributor.authorHyeon, Taeghwan-
dc.date.accessioned2023-10-30T01:44:53Z-
dc.date.available2023-10-30T01:44:53Z-
dc.date.created2023-09-01-
dc.date.issued2023-08-
dc.identifier.citationJoule, Vol.7 No.8, pp.1902-1919-
dc.identifier.issn2542-4351-
dc.identifier.urihttps://hdl.handle.net/10371/195840-
dc.description.abstractIntroducing a new redox cycle into (electro)catalysts can activate reactants, enabling novel functionality. Here, we report that early transition metals (TMs) with vacant d orbitals (d0-oxoanions) directly participate in and accelerate the alkaline oxygen evolution reaction (OER) via a redox cycle associated with early TM-peroxo species [M-(O2)2−]. Interestingly, the metal-peroxo cycles both induced by hydrogen peroxide (H2O2) and OER intermediates have similar characteristics, making it possible to modulate the OER performance using d0-oxoanions that react with H2O2 as enhancers. This principle was successfully integrated into practical electrolysis systems with the anode side extended to typical OER catalysts. Among them, tungstate-modified iron-nickel (oxy)hydroxide (W/FeNiOOH) exhibited current densities of 7.87 and 4.26 A cmgeo−2 at 2.0 Vcell in water electrolysis while running in 1.0 M KOH and 1.0 wt % K2CO3 electrolyte, respectively. Our finding provides universal platforms demonstrating a controllable strategy toward electrochemical oxygen activation using the electrophilic peroxo cycle.-
dc.language영어-
dc.publisherCELL PRESS-
dc.titleElectrochemically generated electrophilic peroxo species accelerates alkaline oxygen evolution reaction-
dc.typeArticle-
dc.identifier.doi10.1016/j.joule.2023.06.018-
dc.citation.journaltitleJoule-
dc.identifier.wosid001076600400001-
dc.identifier.scopusid2-s2.0-85167789345-
dc.citation.endpage1919-
dc.citation.number8-
dc.citation.startpage1902-
dc.citation.volume7-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorSung, Yung-Eun-
dc.contributor.affiliatedAuthorHyeon, Taeghwan-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusOXYGEN-EVOLUTION-
dc.subject.keywordPlusMETAL-OXIDES-
dc.subject.keywordPlusACTIVE-SITE-
dc.subject.keywordPlusCOMPLEXES-
dc.subject.keywordPlusCATALYST-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusTUNGSTATE-
dc.subject.keywordPlusHYDROGEN-
dc.subject.keywordAuthoranion-exchange membrane water electrolyzer-
dc.subject.keywordAuthorin situ electrochemical spectroscopy-
dc.subject.keywordAuthormetal hydroxide-
dc.subject.keywordAuthormetal-peroxo species-
dc.subject.keywordAuthoroxygen evolution reaction-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Chemistry, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share