Publications

Detailed Information

Lithium recovery by solvent extraction : strategies to improve recovery from produced/flowback water containing impurities : 용매 추출을 이용한 리튬 회수 : 불순물을 함유한 생산수/환류수로부터의 리튬 회수율을 향상 시키는 전략 분석

DC Field Value Language
dc.contributor.advisor정은혜-
dc.contributor.authorJunbeum Lee-
dc.date.accessioned2023-11-20T04:18:53Z-
dc.date.available2023-11-20T04:18:53Z-
dc.date.issued2023-
dc.identifier.other000000178227-
dc.identifier.urihttps://hdl.handle.net/10371/196351-
dc.identifier.urihttps://dcollection.snu.ac.kr/common/orgView/000000178227ko_KR
dc.description학위논문(박사) -- 서울대학교대학원 : 공과대학 에너지시스템공학부, 2023. 8. 정은혜.-
dc.description.abstractShale gas produced water and geothermal flowback water contains high concentrations of total dissolved solids that originated from various geochemical reactions between the fluid in the reservoir and the minerals in the rock. Marcellus shale gas produced and Soultz-sous-Forêts geothermal flowback contains a relatively high concentration of lithium, one of the important metals in various industries; as a result, there have been several studies on recovering lithium from the solutions. However, the produced/flowback water also includes impurities like organic compounds or silicate ions that can show a probable inhibitory effect on the recovery of lithium. In this study solvent extraction was used to recover lithium selectively. The effect of the impurities for each produced/flowback water was observed during the solvent extraction. Two consecutive stages of solvent extraction were used to separate the lithium from the produced/flowback water that contains different alkane chain or concentrations of organic compounds or different silicate ions respectively. In addition, selective removal of organic compounds (98.0%) or silicate ions (98.0%) that can inhibit the selective recovery of lithium was implemented to increase the lithium extraction efficiency. Many extractants were used to extract lithium from the produced water including D2EHPA 1M, D2EHPA 1M + TBP (0.3M, 0.5M, and 1.0M) and an ionic liquid was designed by using Cyphos IL 101 and D2EHPA and this was used as an extractant to recover lithium. The highest lithium extraction efficiency from synthesized shale gas produced water was measured 85.9% from the dilution ratio of 25 times by using a synthesized ionic extracting agent [Cyphos IL 101][D2EHPA] (1 M).-
dc.description.abstract셰일가스 생산수 및 지열 환류수는 저류층내 지화학 반응을 통하여 주입수와는 다른 화학적 성질이 나타나며 많은 양의 TDS가 존재한다. 특히 마르셀스(Marcellus) 셰일가스 생산수 및 슐츠-수-포레(Soultz-sous-Forêts) 지열 환류수는 많은 양의 리튬이온이 존재하며 선택적으로 리튬이온을 회수하기 위하여 많은 연구가 진행 중이다.
생산수/환류수 내 리튬외에 불순물로 분류되는 유기물질 및 실리케이트 이온이 많이 들어있으며 이러한 물질들이 리튬 회수의 선택성을 낮출 가능성이 존재한다. 본 연구는 용매추출 방법을 사용하여 리튬이온을 추출하고자 하였으며 유기물질 및 실리케이트 이온들이 리튬 회수를 어떻게 방해하는지 관찰하고자 하였다. 생산수내 다른 유기물질의 종류 및 농도의 주입에 따라 리튬 회수율을 비교하였으며 지열 환류수는 실리케이트 농도에 따라 리튬 회수율을 비교하였다.
더 나아가 높은 리튬 순도를 얻기 위하여 활성탄(AC)을 이용한 흡착 및 침전제(Ca(OH)2 및 Na2CO3)를 이용한 침전을 통하여 선택적으로 생산수/환류수 내 존재하는 유기물질, 실리케이트 이온 및 다가양이온을 제거하여 리튬의 추출률을 증가시키고자 하였다. 리튬을 선택적으로 회수할 수 있는 용매를 Cyphos IL 101 와 D2EHPA를 반응시켜 Ionic liquid를 합성하여 추출제로 사용하였으며, 25배로 희석된 생산수에 [Cyphos IL 101][D2EHPA](1M)를 추출제로 적용했을 경우 리튬 추출률이 최대 85.9 % 나타나는 것으로 밝혀졌다.
-
dc.description.tableofcontentsTable of Contents
Chapter 1. Introduction 1
1.1. Study background 1
1.2. Research objectives 6

Chapter 2. Literature review 8
2.1. Solvent extraction 8
2.2. Lithium recovery methods 12

Chapter 3. Selective lithium recovery from geothermal water 15
3.1. Introduction 15
3.2. Materials and methods 17
3.3. Effect of different concentrations of silicate ions during lithium recovery using solvent extraction 27
3.4. Improvement of lithium recovery (pretreatment) 41
3.5. Improvement of lithium recovery (solvent extraction) 55
3.6. Summary 63

Chapter 4. Selective lithium recovery from produced water 65
4.1. Introduction 65
4.2. Materials and Methods 68
4.3. Effect of different chain lengths of alkanes during lithium recovery using solvent extraction 77
4.4. Effect of different concentrations of hexane during lithium recovery using solvent extraction 87
4.5. Overall recovery efficiency of lithium 96
4.6. Improvement of lithium recovery (pretreatment) 101
4.7. Synthesis of ionic liquid 113
4.8. Improvement of lithium recovery (solvent extraction) 119
4.9. Overall recovery efficiency of lithium 127
4.10. Summary 131

Chapter 5. Conclusion 133

References 136

Appendix 163
A.1. Introduction 163
A.2. Application of the lithium recovery process to EGS sites 164
A.3. PHREEQC 172
A.4. Modelling approach 180
A.5. Groundwater mixing ratios 183
A.6. Prediction of precipitation 201
A.7. Summary 204
Abstract in Korean 205
-
dc.format.extent206-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectLithium-
dc.subjectProduced water-
dc.subjectFlowback water-
dc.subjectSolvent extraction-
dc.subjectOrganic compounds-
dc.subjectSilicate ions-
dc.subject.ddc622.33-
dc.titleLithium recovery by solvent extraction : strategies to improve recovery from produced/flowback water containing impurities-
dc.title.alternative용매 추출을 이용한 리튬 회수 : 불순물을 함유한 생산수/환류수로부터의 리튬 회수율을 향상 시키는 전략 분석-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthor이준범-
dc.contributor.department공과대학 에너지시스템공학부-
dc.description.degree박사-
dc.date.awarded2023-08-
dc.identifier.uciI804:11032-000000178227-
dc.identifier.holdings000000000050▲000000000058▲000000178227▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share