Detailed Information

Concurrent Body-Coupled Powering and Communication ICs With a Single Electrode

Cited 0 time in Web of Science Cited 0 time in Scopus

Li, Jiamin; Dong, Yilong; Lin, Longyang; Tan, Joanne Si Ying; Fong, Jia Yi; Yoo, Jerald

Issue Date
Institute of Electrical and Electronics Engineers
IEEE Journal of Solid-State Circuits, Vol.59 No.4, pp.1006-1016
Body-coupled powering (BCP) and body-coupled communication (BCC) utilize the human body channel as the wireless transmission medium, which shows less path loss around the body area. However, integrating both BCP and BCC requires multiple electrodes or alternating the uplink and downlink in the time domain, due to signal interferences and backflow between different paths. To address this issue, we propose a base station (BS) IC and a sensor node (SN) IC with BCP and BCC concurrency. At the BS, the adaptive self-interference cancellation (SI-C) structure suppresses the output signals that are coupled at the data receiver, enabling the concurrent uplink data recovery and downlink power delivery. At the SN, the ground domain of the uplink data path is separated from that of the downlink power/data path to suppress leakage between the paths. For regulated power supply in different ground domains, the cross-ground-domain power converter is designed with 89.1% efficiency. The ICs are implemented in a 40-nm 1P8M standard CMOS process, and BCC + BCP concurrent operations are successfully validated.
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

Yoo, Jerald Image

Yoo, Jerald유담
  • College of Engineering
  • Department of Electrical and Computer Engineering
Research Area Biomedical Applications, Energy-Efficient Integrated Circuits


Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.