Detailed Information

Design of Energy-Efficient On-Chip EEG Classification and Recording Processors for Wearable Environments

Cited 10 time in Web of Science Cited 12 time in Scopus

Bin Altaf, Muhammad Awais; Zhang, Chen; Radakovic, Ljubomir; Yoo, Jerald

Issue Date
IEEE International Symposium on Circuits and Systems proceedings, pp.1126-1129
Classification of EEG under wearable environment faces many challenges including motion artifact, electrode DC offset, noise and limited available energy source. This paper describes the design consideration of a multi-channel machine-learning based EEG classification and recording processors for wearable form-factor sensors. The goal is to optimize the detection performance while balancing the analog and digital signal processing to optimize its energy consumption. On-chip classification significantly helps achieving energy-efficiency by reducing the communication overhead of the data. With epileptic seizure detection and recording system examples, we start from choosing number of channels, the sampling rate, and how to effectively extract features out of the down-sampled data. After that, classification algorithms are also discussed in detail. When verified with the Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) EEG database, based on Repeated Random Sub-Sampling validation, the seizure detection sensitivity and specificity of the Non-Linear SVM are improved by 12.4% P and 3.56% P, respectively, compared to the Linear-SVM. The LSVM and NLSVM processors are fabricated in 0.18 mu m 1P6M CMOS and consume 1.52 mu J/classification and 1.34 mu J/classification, respectively. Finally, the on-chip memory requirements for storing the raw seizure data is discussed.
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

Yoo, Jerald Image

Yoo, Jerald유담
  • College of Engineering
  • Department of Electrical and Computer Engineering
Research Area Biomedical Applications, Energy-Efficient Integrated Circuits


Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.