Publications

Detailed Information

Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes

DC Field Value Language
dc.contributor.authorKang, Young-Hoon-
dc.contributor.authorLee, Chul-Hwan-
dc.contributor.authorSeo, Yeon-Soo-
dc.date.accessioned2024-05-14T06:37:47Z-
dc.date.available2024-05-14T06:37:47Z-
dc.date.created2023-05-09-
dc.date.issued2010-04-
dc.identifier.citationCritical Reviews in Biochemistry and Molecular Biology, Vol.45 No.2, pp.71-96-
dc.identifier.issn1040-9238-
dc.identifier.urihttps://hdl.handle.net/10371/201859-
dc.description.abstractDNA replication is a primary mechanism for maintaining genome integrity, but it serves this purpose best by cooperating with other proteins involved in DNA repair and recombination. Unlike leading strand synthesis, lagging strand synthesis has a greater risk of faulty replication for several reasons: First, a significant part of DNA is synthesized by polymerase α, which lacks a proofreading function. Second, a great number of Okazaki fragments are synthesized, processed and ligated per cell division. Third, the principal mechanism of Okazaki fragment processing is via generation of flaps, which have the potential to form a variety of structures in their sequence context. Finally, many proteins for the lagging strand interact with factors involved in repair and recombination. Thus, lagging strand DNA synthesis could be the best example of a converging place of both replication and repair proteins. To achieve the risky task with extraordinary fidelity, Okazaki fragment processing may depend on multiple layers of redundant, but connected pathways. An essential Dna2 endonuclease/helicase plays a pivotal role in processing common structural intermediates that occur during diverse DNA metabolisms (e.g. lagging strand synthesis and telomere maintenance). Many roles of Dna2 suggest that the preemptive removal of long or structured flaps ultimately contributes to genome maintenance in eukaryotes. In this review, we describe the function of Dna2 in Okazaki fragment processing, and discuss its role in the maintenance of genome integrity with an emphasis on its functional interactions with other factors required for genome maintenance. © 2010 Informa UK Ltd.-
dc.language영어-
dc.publisherTaylor & Francis-
dc.titleDna2 on the road to Okazaki fragment processing and genome stability in eukaryotes-
dc.typeArticle-
dc.identifier.doi10.3109/10409230903578593-
dc.citation.journaltitleCritical Reviews in Biochemistry and Molecular Biology-
dc.identifier.wosid000275655700001-
dc.identifier.scopusid2-s2.0-77949557756-
dc.citation.endpage96-
dc.citation.number2-
dc.citation.startpage71-
dc.citation.volume45-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorLee, Chul-Hwan-
dc.type.docTypeReview-
dc.description.journalClass1-
dc.subject.keywordPlusREPLICATION-PROTEIN-A-
dc.subject.keywordPlusCELL NUCLEAR ANTIGEN-
dc.subject.keywordPlusSACCHAROMYCES-CEREVISIAE DNA2-
dc.subject.keywordPlusDOUBLE-STRAND BREAKS-
dc.subject.keywordPlusNUCLEOTIDE EXCISION-REPAIR-
dc.subject.keywordPlusHUMAN FLAP ENDONUCLEASE-1-
dc.subject.keywordPlusCAG REPEAT TRACTS-
dc.subject.keywordPlusLAGGING-STRAND-
dc.subject.keywordPlusYEAST DNA2-
dc.subject.keywordPlusFISSION YEAST-
dc.subject.keywordAuthorDna2-
dc.subject.keywordAuthorFen1-
dc.subject.keywordAuthorDNA replication-
dc.subject.keywordAuthorlagging strand synthesis-
dc.subject.keywordAuthorOkazaki fragment processing-
dc.subject.keywordAuthorDNA repair-
dc.subject.keywordAuthorDNA recombination-
dc.subject.keywordAuthorgenome instability-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Medicine
Research Area Epigenetics, Heterochromatin, Histone Modifications

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share