Publications

Detailed Information

Structurally Engineered Nanoporous Ta2O5–x Selector-Less Memristor for High Uniformity and Low Power Consumption : Structurally Engineered Nanoporous Ta2O5-x Selector-Less Memristor for High Uniformity and Low Power Consumption

Cited 20 time in Web of Science Cited 20 time in Scopus
Authors

Kwon, Soonbang; Kim, Tae-Wook; Jang, Seonghoon; Lee, Jae-Hwang; Kim, Nam Dong; Ji, Yongsung; Lee, Chul-Ho; Tour, James M.; Wang, Gunuk

Issue Date
2017-10
Publisher
American Chemical Society
Citation
ACS Applied Materials & Interfaces, Vol.9 No.39, pp.34015-34023
Abstract
A memristor architecture based on metal-oxide materials would have great promise in achieving exceptional energy efficiency and higher scalability in next-generation electronic memory systems. Here, we propose a facile method-for fabricating selector-less memristor arrays using an engineered nanoporous Ta2O5-x architecture. The device was fabricated in the form of crossbar arrays, and it functions as a switchable rectifier with a self-embedded nonlinear switching behavior and ultralow power consumption (similar to 2.7 X 10(-6) W), which results in effective suppression of crosstalk interference. In addition, we determined that the essential switching elements, such as the programming power, the sneak current, the nonlinearity value, and the device-to-device uniformity, could be enhanced by in-depth structural engineering of the pores in the Ta2O5-x layer. Our results, oil the basis of the structural .engineering of metal-oxide materials, could provide an attractive approach for fabricating simple and cost-efficient memristor. arrays with acceptable device, uniformity and low power consumption without the need for additional addressing selectors.
ISSN
1944-8244
URI
https://hdl.handle.net/10371/202278
DOI
https://doi.org/10.1021/acsami.7b06918
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • Department of Electrical and Computer Engineering
Research Area 2차원 반도체 소자 및 재료, High-Performance 2D Electronics, Low-Power 2D Electronics, 뉴로모픽 소자 및 응용기술, 저전력 소자 및 소자물리

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share