Publications

Detailed Information

T-Cell-Derived Nanovesicles for Cancer Immunotherapy

DC Field Value Language
dc.contributor.authorHong, Jihye-
dc.contributor.authorKang, Mikyung-
dc.contributor.authorJung, Mungyo-
dc.contributor.authorLee, Yun Young-
dc.contributor.authorCho, Yongbum-
dc.contributor.authorKim, Cheesue-
dc.contributor.authorSong, Seuk Young-
dc.contributor.authorPark, Chun Gwon-
dc.contributor.authorDoh, Junsang-
dc.contributor.authorKim, Byung-Soo-
dc.date.accessioned2024-05-16T01:21:27Z-
dc.date.available2024-05-16T01:21:27Z-
dc.date.created2021-07-30-
dc.date.created2021-07-30-
dc.date.created2021-07-30-
dc.date.issued2021-08-
dc.identifier.citationAdvanced Materials, Vol.33 No.33, p. 2101110-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://hdl.handle.net/10371/202453-
dc.description.abstractAlthough T-cell therapy is a remarkable breakthrough in cancer immunotherapy, the therapeutic efficacy is limited for solid tumors. A major cause of the low efficacy is T-cell exhaustion by immunosuppressive mechanisms of solid tumors, which are mainly mediated by programmed death-ligand 1 (PD-L1) and transforming growth factor-beta (TGF-beta). Herein, T-cell-derived nanovesicles (TCNVs) produced by the serial extrusion of cytotoxic T cells through membranes with micro-/nanosized pores that inhibit T-cell exhaustion and exhibit antitumoral activity maintained in the immunosuppressive tumor microenvironment (TME) are presented. TCNVs, which have programmed cell death protein 1 and TGF-beta receptor on their surface, block PD-L1 on cancer cells and scavenge TGF-beta in the immunosuppressive TME, thereby preventing cytotoxic-T-cell exhaustion. In addition, TCNVs directly kill cancer cells via granzyme B delivery. TCNVs successfully suppress tumor growth in syngeneic-solid-tumor-bearing mice. Taken together, TCNV offers an effective cancer immunotherapy strategy to overcome the tumor's immunosuppressive mechanisms.-
dc.language영어-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleT-Cell-Derived Nanovesicles for Cancer Immunotherapy-
dc.typeArticle-
dc.identifier.doi10.1002/adma.202101110-
dc.citation.journaltitleAdvanced Materials-
dc.identifier.wosid000670512600001-
dc.identifier.scopusid2-s2.0-85109389123-
dc.citation.number33-
dc.citation.startpage2101110-
dc.citation.volume33-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorDoh, Junsang-
dc.contributor.affiliatedAuthorKim, Byung-Soo-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusIMMUNE CHECKPOINT INHIBITORS-
dc.subject.keywordPlusGRANZYME-B-
dc.subject.keywordPlusANTI-PD-1 ANTIBODY-
dc.subject.keywordPlusBETA-
dc.subject.keywordPlusANTIGEN-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusEXPRESSION-
dc.subject.keywordPlusINDUCTION-
dc.subject.keywordPlusEXOSOMES-
dc.subject.keywordPlusRECEPTOR-
dc.subject.keywordAuthorcancer-
dc.subject.keywordAuthorcytotoxic T cells-
dc.subject.keywordAuthorexhaustion-
dc.subject.keywordAuthorimmunotherapy-
dc.subject.keywordAuthornanovesicles-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • Department of Materials Science & Engineering
Research Area Ex Vivo Models, Lymphocyte Biology, Smart Biomaterials

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share