Publications

Detailed Information

Hyperglycemia-induced oxidative stress promotes tumor metastasis by upregulating vWF expression in endothelial cells through the transcription factor GATA1

Cited 7 time in Web of Science Cited 9 time in Scopus
Authors

Jeong, Han-Seok; Lee, Da-Hye; Kim, Seung-Hoon; Lee, Chang-Han; Shin, Hyun Mu; Kim, Hang-Rae; Cho, Chung-Hyun

Issue Date
2022-03
Publisher
Nature Publishing Group
Citation
Oncogene, Vol.41 No.11, pp.1634-1646
Abstract
Diabetes mellitus (DM) characterized by hyperglycemia is a chronic metabolic disorder that leads to many symptoms and vascular complications. Despite the close association between DM and cancer progression, the response and role of endothelial cells (ECs) under diabetic conditions in tumor metastasis remain to be elucidated. In this study, we sought to determine whether and how ECs under diabetic conditions contribute to tumor metastasis. We have taken advantage of syngeneic mouse tumor models of Lewis lung carcinoma (LLC) and melanoma (B16F10) cells and a streptozotocin (STZ)-induced hyperglycemia model. We demonstrated that hyperglycemia increased the metastasis of LLC and B16F10 cells in an experimental metastasis model with an intravenous injection of the tumor cells. We also found that hyperglycemia promoted lung metastasis of tumor cells by increasing the adhesiveness of ECs to facilitate the adhesion of tumor cells to ECs rather than affecting the metastatic behavior of tumor cells themselves. From the analysis of gene expression in primary lung ECs from STZ-treated mice, we identified that vWF promoted the adhesion of tumor cells to ECs and the transendothelial migration of tumor cells. Mechanistically, hyperglycemia-induced oxidative stress in ECs, and increased oxidative stress enhanced vWF expression in ECs through an increase in the transcription factor GATA1. These results provide evidence for the role of vWF in ECs in promoting hyperglycemia-induced tumor metastasis and potential therapeutic targets for the regulation of vWF expression in ECs and hyperglycemia-induced tumor metastasis.
ISSN
0950-9232
URI
https://hdl.handle.net/10371/202534
DOI
https://doi.org/10.1038/s41388-022-02207-y
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Medicine
Research Area Function, Immune modulation by metabolites, T-cell anergy, differentiation of memory CD8+ T cells, metabolism

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share