Publications

Detailed Information

Memristive Switching Mechanism in Colloidal InP/ZnSe/ZnS Quantum Dot-Based Synaptic Devices for Neuromorphic Computing

DC Field Value Language
dc.contributor.authorBaek, Geun Woo-
dc.contributor.authorKim, Yeon Jun-
dc.contributor.authorKim, Jaekwon-
dc.contributor.authorChang, Jun Hyuk-
dc.contributor.authorKim, Uhjin-
dc.contributor.authorAn, Soobin-
dc.contributor.authorPark, Junhyeong-
dc.contributor.authorYu, Sunkyu-
dc.contributor.authorBae, Wan Ki-
dc.contributor.authorLim, Jaehoon-
dc.contributor.authorLee, Soo-Yeon-
dc.contributor.authorKwak, Jeonghun-
dc.date.accessioned2024-05-20T00:38:47Z-
dc.date.available2024-05-20T00:38:47Z-
dc.date.created2024-05-16-
dc.date.created2024-05-16-
dc.date.issued2024-05-
dc.identifier.citationNano Letters, Vol.24 No.19, pp.5855-5861-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://hdl.handle.net/10371/203339-
dc.description.abstractQuantum dots (QDs) have garnered a significant amount of attention as promising memristive materials owing to their size-dependent tunable bandgap, structural stability, and high level of applicability for neuromorphic computing. Despite these advantageous properties, the development of QD-based memristors has been hindered by challenges in understanding and adjusting the resistive switching (RS) behavior of QDs. Herein, we propose three types of InP/ZnSe/ZnS QD-based memristors to elucidate the RS mechanism, employing a thin poly(methyl methacrylate) layer. This approach not only allows us to identify which carriers (electron or hole) are trapped within the QD layer but also successfully demonstrates QD-based synaptic devices. Furthermore, to utilize the QD memristor as a synapse, long-term potentiation/depression (LTP/LTD) characteristics are measured, resulting in a low nonlinearity of LTP/LTD at 0.1/1. On the basis of the LTP/LTD characteristics, single-layer perceptron simulations were performed using the Extended Modified National Institute of Standards and Technology, verifying a maximum recognition rate of 91.46%.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titleMemristive Switching Mechanism in Colloidal InP/ZnSe/ZnS Quantum Dot-Based Synaptic Devices for Neuromorphic Computing-
dc.typeArticle-
dc.identifier.doi10.1021/acs.nanolett.4c01083-
dc.citation.journaltitleNano Letters-
dc.identifier.wosid001226247300001-
dc.identifier.scopusid2-s2.0-85192255395-
dc.citation.endpage5861-
dc.citation.number19-
dc.citation.startpage5855-
dc.citation.volume24-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorYu, Sunkyu-
dc.contributor.affiliatedAuthorLee, Soo-Yeon-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordAuthormemristors-
dc.subject.keywordAuthorneuromorphic-
dc.subject.keywordAuthorquantum dots-
dc.subject.keywordAuthorresistive switching mechanism-
dc.subject.keywordAuthorsynaptic device-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • Department of Electrical and Computer Engineering
Research Area Disordered, Open-System Wave Mechanics, Photonic AI Systems, Photonic Neuromorphic Devices, 광학 뉴로모픽 소자, 광학 인공지능 시스템, 무질서, 열린계 파동역학

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share