Publications

Detailed Information

Learning induces the translin/trax RNase complex to express activin receptors for persistent memory

DC Field Value Language
dc.contributor.authorPark, Alan Jung-
dc.contributor.authorHavekes, Robbert-
dc.contributor.authorFu, Xiuping-
dc.contributor.authorHansen, Rolf-
dc.contributor.authorTudor, Jennifer C.-
dc.contributor.authorPeixoto, Lucia-
dc.contributor.authorLi, Zhi-
dc.contributor.authorWu, Yen-Ching-
dc.contributor.authorPoplawski, Shane G.-
dc.contributor.authorBaraban, Jay M.-
dc.contributor.authorAbel, Ted-
dc.date.accessioned2024-05-20T00:40:49Z-
dc.date.available2024-05-20T00:40:49Z-
dc.date.created2024-05-17-
dc.date.issued2017-09-
dc.identifier.citationELIFE, Vol.6-
dc.identifier.issn2050-084X-
dc.identifier.urihttps://hdl.handle.net/10371/203377-
dc.description.abstractLong-lasting forms of synaptic plasticity and memory require de novo protein synthesis. Yet, how learning triggers this process to form memory is unclear. Translin/trax is a candidate to drive this learning-induced memory mechanism by suppressing microRNA-mediated translational silencing at activated synapses. We find that mice lacking translin/trax display defects in synaptic tagging, which requires protein synthesis at activated synapses, and long-term memory. Hippocampal samples harvested from these mice following learning show increases in several disease-related microRNAs targeting the activin A receptor type 1C (ACVR1C), a component of the transforming growth factor-beta receptor superfamily. Furthermore, the absence of translin/trax abolishes synaptic upregulation of ACVR1C protein after learning. Finally, synaptic tagging and long-term memory deficits in mice lacking translin/trax are mimicked by ACVR1C inhibition. Thus, we define a new memory mechanism by which learning reverses microRNA-mediated silencing of the novel plasticity protein ACVR1C via translin/trax.-
dc.language영어-
dc.publisherELIFE SCIENCES PUBLICATIONS LTD-
dc.titleLearning induces the translin/trax RNase complex to express activin receptors for persistent memory-
dc.typeArticle-
dc.identifier.doi10.7554/eLife.27872-
dc.citation.journaltitleELIFE-
dc.identifier.wosid000411197700001-
dc.identifier.scopusid2-s2.0-85032990370-
dc.citation.volume6-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorPark, Alan Jung-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusLONG-TERM POTENTIATION-
dc.subject.keywordPlusBINDING PROTEIN-
dc.subject.keywordPlusMESSENGER-RNA-
dc.subject.keywordPlusTESTIS-BRAIN-
dc.subject.keywordPlusSYNAPTIC PLASTICITY-
dc.subject.keywordPlusCAPTURE HYPOTHESIS-
dc.subject.keywordPlusDEPENDENT MEMORY-
dc.subject.keywordPlusGENE-EXPRESSION-
dc.subject.keywordPlusRISC ACTIVATION-
dc.subject.keywordPlusMICE-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Medicine
Research Area Computational decoding, Electrophysiology, Neuroscience

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share