Publications

Detailed Information

Prevascularized, multiple-layered cell sheets of direct cardiac reprogrammed cells for cardiac repair

DC Field Value Language
dc.contributor.authorSong, Seuk Young-
dc.contributor.authorKim, Hyeok-
dc.contributor.authorYoo, Jin-
dc.contributor.authorKwon, Sung Pil-
dc.contributor.authorPark, Bong Woo-
dc.contributor.authorKim, Jin-Ju-
dc.contributor.authorBan, Kiwon-
dc.contributor.authorChar, Kookheon-
dc.contributor.authorPark, Hun-Jun-
dc.contributor.authorKim, Byung-Soo-
dc.date.accessioned2024-06-13T02:11:32Z-
dc.date.available2024-06-13T02:11:32Z-
dc.date.created2020-10-21-
dc.date.created2020-10-21-
dc.date.issued2020-08-
dc.identifier.citationBiomaterials Science, Vol.8 No.16, pp.4508-4520-
dc.identifier.issn2047-4830-
dc.identifier.urihttps://hdl.handle.net/10371/204237-
dc.description.abstractWe previously demonstrated that the efficiency of direct cardiac reprogramming from fibroblasts could be enhancedviamimicking of thein vivocardiac microenvironment through coculture with cardiomyocytes and by providing electric cues. In the present study, we developed cell sheets using the direct cardiac reprogrammed cells and a nanothin, nanoporous poly(lactic-co-glycolic acid) membrane. Cell sheets were laid layer-by-layer and prevacularized with endothelial cells between the layers. These prevascularized, multilayered cell sheets were implanted on the epicardium of infarcted rat hearts, which led to an improvement in cardiac function and reduction in adverse cardiac remodeling post-myocardial infarction (MI). Thus, thein vivomimicking direct cardiac reprogramming and prevascularization technique can enhance the efficiency of cell sheets in clinical applications and provide new opportunities to prevent heart failure following MI.-
dc.language영어-
dc.publisherRoyal Society of Chemistry-
dc.titlePrevascularized, multiple-layered cell sheets of direct cardiac reprogrammed cells for cardiac repair-
dc.typeArticle-
dc.identifier.doi10.1039/d0bm00701c-
dc.citation.journaltitleBiomaterials Science-
dc.identifier.wosid000558225900010-
dc.identifier.scopusid2-s2.0-85089406088-
dc.citation.endpage4520-
dc.citation.number16-
dc.citation.startpage4508-
dc.citation.volume8-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorChar, Kookheon-
dc.contributor.affiliatedAuthorKim, Byung-Soo-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusCARDIOMYOCYTE-LIKE CELLS-
dc.subject.keywordPlusMYOCARDIAL-INFARCTION-
dc.subject.keywordPlusHUMAN FIBROBLASTS-
dc.subject.keywordPlusIN-VITRO-
dc.subject.keywordPlusTISSUE-
dc.subject.keywordPlusHEART-
dc.subject.keywordPlusTRANSPLANTATION-
dc.subject.keywordPlusCOCULTURE-
dc.subject.keywordPlusDIFFERENTIATION-
dc.subject.keywordPlusENHANCEMENT-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area biomaterials, nanomedicine, regenerative medicine

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share