Publications

Detailed Information

Graphene oxide reinforced hydrogels for osteogenic differentiation of human adipose-derived stem cells

DC Field Value Language
dc.contributor.authorNoh, Myungkyung-
dc.contributor.authorKim, Su-Hwan-
dc.contributor.authorKim, Jiyong-
dc.contributor.authorLee, Ju-Ro-
dc.contributor.authorJeong, Gun-Jae-
dc.contributor.authorYoon, Jeong-Kee-
dc.contributor.authorKang, Seokyung-
dc.contributor.authorBhang, Suk Ho-
dc.contributor.authorYoon, Hee Hun-
dc.contributor.authorLee, Jong-Chan-
dc.contributor.authorHwang, Nathaniel S.-
dc.contributor.authorKim, Byung-Soo-
dc.date.accessioned2024-06-13T02:13:02Z-
dc.date.available2024-06-13T02:13:02Z-
dc.date.created2018-06-19-
dc.date.created2018-06-19-
dc.date.issued2017-04-
dc.identifier.citationRSC Advances, Vol.7 No.34, pp.20779-20788-
dc.identifier.issn2046-2069-
dc.identifier.urihttps://hdl.handle.net/10371/204265-
dc.description.abstractPolyethylene glycol (PEG)-based hydrogels are attractive biomaterials for stem cell culture due to their tunable material properties and mechanical strength. However, the lack of cell adhesion sites has been one of the major obstacles in generating functional tissue constructs using PEG-based hydrogels. To overcome this limitation, we designed graphene oxide (GO)-functionalized polyethylene glycol diacrylate (PEGDA) hydrogels to assign cell adhesion-dependent biofunctionality. The incorporation of GO into three-dimensional PEGDA networks improved cell attachment, engaged focal adhesion, and activated focal adhesion kinase (FAK) signaling of hydrogel-encapsulated human adipose-derived stem cells (hADSCs). Compared to the control PEGDA hydrogel, GO functionalized PEGDA hydrogel (PEGDA-GO) resulted in enhanced cell viability and survival. When subsequently cultured under osteoinductive condition, PEGDA-GO enhanced osteogenic differentiation and stimulated osteogenic phenotypes compared to those in its PEGDA counterpart. Taken together, GO could serve as an effective biofunctionalizing moiety to modulate stem cell adhesion and differentiation.-
dc.language영어-
dc.publisherRoyal Society of Chemistry-
dc.titleGraphene oxide reinforced hydrogels for osteogenic differentiation of human adipose-derived stem cells-
dc.typeArticle-
dc.identifier.doi10.1039/c7ra02410j-
dc.citation.journaltitleRSC Advances-
dc.identifier.wosid000399722300010-
dc.identifier.scopusid2-s2.0-85018493763-
dc.citation.endpage20788-
dc.citation.number34-
dc.citation.startpage20779-
dc.citation.volume7-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorLee, Jong-Chan-
dc.contributor.affiliatedAuthorHwang, Nathaniel S.-
dc.contributor.affiliatedAuthorKim, Byung-Soo-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusBONE MORPHOGENETIC PROTEIN-2-
dc.subject.keywordPlusEXTRACELLULAR-MATRIX-
dc.subject.keywordPlusCHONDROGENIC DIFFERENTIATION-
dc.subject.keywordPlusOSTEOBLAST DIFFERENTIATION-
dc.subject.keywordPlusGROWTH-FACTOR-
dc.subject.keywordPlusADHESION-
dc.subject.keywordPlusTISSUE-
dc.subject.keywordPlusFATE-
dc.subject.keywordPlusCYTOCOMPATIBILITY-
dc.subject.keywordPlusCYTOTOXICITY-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area biomaterials, nanomedicine, regenerative medicine

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share