Publications

Detailed Information

Efficient Direct Lineage Reprogramming of Fibroblasts into Induced Cardiomyocytes Using Nanotopographical Cues

DC Field Value Language
dc.contributor.authorYoo, Junsang-
dc.contributor.authorChang, Yujung-
dc.contributor.authorKim, Hongwon-
dc.contributor.authorBaek, Soonbong-
dc.contributor.authorChoi, Hwan-
dc.contributor.authorJeong, Gun-Jae-
dc.contributor.authorShin, Jaein-
dc.contributor.authorKim, Hongnam-
dc.contributor.authorKim, Byung-Soo-
dc.contributor.authorKim, Jongpil-
dc.date.accessioned2024-06-13T02:13:05Z-
dc.date.available2024-06-13T02:13:05Z-
dc.date.created2018-06-19-
dc.date.issued2017-03-
dc.identifier.citationJournal of Biomedical Nanotechnology, Vol.13 No.3, pp.269-279-
dc.identifier.issn1550-7033-
dc.identifier.urihttps://hdl.handle.net/10371/204266-
dc.description.abstractInduced cardiomyocytes (iCMs) generated via direct lineage reprogramming offer a novel therapeutic target for the study and treatment of cardiac diseases. However, the efficiency of iCM generation is significantly low for therapeutic applications. Here, we show an efficient direct conversion of somatic fibroblasts into iCMs using nanotopographic cues. Compared with flat substrates, the direct conversion of fibroblasts into iCMs on nanopatterned substrates resulted in a dramatic increase in the reprogramming efficiency and maturation of iCM phenotypes. Additionally, enhanced reprogramming by substrate nanotopography was due to changes in the activation of focal adhesion kinase and specific histone modifications. Taken together, these results suggest that nanotopographic cues can serve as an efficient stimulant for direct lineage reprogramming into iCMs.-
dc.language영어-
dc.publisherAmerican Scientific Publishers-
dc.titleEfficient Direct Lineage Reprogramming of Fibroblasts into Induced Cardiomyocytes Using Nanotopographical Cues-
dc.typeArticle-
dc.identifier.doi10.1166/jbn.2017.2347-
dc.citation.journaltitleJournal of Biomedical Nanotechnology-
dc.identifier.wosid000397029400003-
dc.identifier.scopusid2-s2.0-85016037541-
dc.citation.endpage279-
dc.citation.number3-
dc.citation.startpage269-
dc.citation.volume13-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorKim, Byung-Soo-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusEMBRYONIC STEM-CELLS-
dc.subject.keywordPlusFOCAL ADHESION KINASE-
dc.subject.keywordPlusMOUSE FIBROBLASTS-
dc.subject.keywordPlusBIOPHYSICAL REGULATION-
dc.subject.keywordPlusEXTRACELLULAR-MATRIX-
dc.subject.keywordPlusDOPAMINERGIC-NEURONS-
dc.subject.keywordPlusCARDIAC FIBROBLASTS-
dc.subject.keywordPlusPLURIPOTENT STATE-
dc.subject.keywordPlusDEFINED FACTORS-
dc.subject.keywordPlusNUCLEAR SHAPE-
dc.subject.keywordAuthorDirect Lineage Reprogramming-
dc.subject.keywordAuthorInduced Cardiomyocytes-
dc.subject.keywordAuthorNanotopographical Cues-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area biomaterials, nanomedicine, regenerative medicine

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share