Publications

Detailed Information

Improved spinal fusion efficacy by long-term delivery of bone morphogenetic protein-2 in a rabbit model

Cited 14 time in Web of Science Cited 20 time in Scopus
Authors

Lee, Jae-Wook; Lee, Saehyoung; Lee, Sun Hwa; Yang, Hee Seok; Im, Gun-Il; Kim, Chang-Sung; Park, Jung-Ho; Kim, Byung Soo

Issue Date
2011-12
Publisher
Taylor & Francis
Citation
Acta Orthopaedica, Vol.82 No.6, pp.756-760
Abstract
Background and purpose Various new delivery systems for recombinant human bone morphogenetic protein-2 (rhBMP-2) have been introduced to improve its efficacy in osteogenesis. Of these, we have previously developed heparin-conjugated PLGA nanospheres (HCPN) as a long-term delivery system for BMP-2. In vitro studies have shown that the BMP-2 long-term delivery system enhances the level of bone formation. However, the long-term effects of BMP-2 on spinal fusion have not been assessed. Therefore, we now tested the hypothesis that the long-term delivery of BMP-2 using HCPN improves spinal fusion compared to short-term delivery in a rabbit fusion model. Methods 24 adult New Zealand White rabbits underwent posterolateral fusion (6 animals in 4 groups). The autograft group received an autologous iliac chip bone graft as a positive control. The BMP-2-PN group received rhBMP-2 (20 mu g per implant) and PLGA nanospheres (PN) suspended in fibrin gel, and served as a short-term release group. The HCPN group received HCPN suspended in fibrin gel without BMP-2 as a negative control. The BMP-2-HCPN group received rhBMP-2 (20 mu g per implant)bound HCPN suspended in fibrin gel and served as a long-term release group. All animals were killed 12 weeks after surgery. Manual palpation, axial tensile tests, radiography, and histological evaluations were then performed. Results The spinal fusion rate and Young's modulus of the fusion mass were better in the BMP-2 long-term delivery group than in the short-term delivery group at an equivalent dose. However, the outcome of the long-term delivery was inferior to that of the autograft group. Interpretation The HCPN system showed potential as an effective carrier that might improve the osteogenic efficacy of BMP-2 for spinal fusion.
ISSN
1745-3674
URI
https://hdl.handle.net/10371/204332
DOI
https://doi.org/10.3109/17453674.2011.636675
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area biomaterials, nanomedicine, regenerative medicine

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share