Publications

Detailed Information

Effect of Cross-Linking Reagents for Hyaluronic Acid Hydrogel Dermal Fillers on Tissue Augmentation and Regeneration

Cited 106 time in Web of Science Cited 117 time in Scopus
Authors

Yeom, Junseok; Bhang, Suk Ho; Kim, Byung-Soo; Seo, Moo Seok; Hwang, Eui Jin; Cho, Il Hwan; Park, Jung Kyu; Hahn, Sei Kwang

Issue Date
2010-02
Publisher
AMER CHEMICAL SOC
Citation
BIOCONJUGATE CHEMISTRY, Vol.21 No.2, pp.240-247
Abstract
A novel, biocompatible, and nontoxic dermal filler using hyaluronic acid (HA) hydrogels was successfully developed for tissue augmentation applications. Instead of using highly reactive cross-linkers such as divinyl sulfone (DVS) for Hylaform, 1,4-butanediol diglycidyl ether (BDDE) for Restylane, and 1,2,7,8-diepoxyoctane (DEO) for Puragen, HA hydrogels were prepared by direct amide bond formation between the carboxyl groups of HA and hexamethylenediamine (HMDA) with an optimized carboxyl group modification for effective tissue augmentation. The HA-HMDA hydrogels could be prepared within 5 min by the addition of HMDA to HA solution activated with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) and 1-hydroxybenzotriazole monohydrate (HOBt). Five kinds of samples, a normal control, a negative control, a positive control of Restylane, adipic acid dihydrazide grafted HA (HA-ADH) hydrogels, and HA-HMDA hydrogels, were subcutaneously injected to wrinkled model mice. According to the image analysis on dorsal skin augmentation, the HA-HMDA hydrogels exhibited the best tissue augmentation effect being stable longer than 3 months. Furthermore, histological analyses after hematoxylin-eosin (H&E) and Masson's trichrome staining revealed the excellent biocompatibility and safety of HA-HMDA hydrogels. The dermal thickness and the dermal collagen density in wrinkled mice after treatment with HA-HMDA hydrogels for 12 weeks were comparable to those of normal mice. Compared with HA-DVS hydrogels and Restylane, the excellent tissue augmentation by HA-HMDA hydrogels might be ascribed to the biocompatible residues of amine groups in the cross-linker of HMDA. The HA-HMDA hydrogels will be investigated further as a novel dermal filler for clinical applications.
ISSN
1043-1802
URI
https://hdl.handle.net/10371/204359
DOI
https://doi.org/10.1021/bc9002647
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area biomaterials, nanomedicine, regenerative medicine

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share