Publications

Detailed Information

The use of poly(lactic-co-glycolic acid) microspheres as injectable cell carriers for cartilage regeneration in rabbit knees

Cited 25 time in Web of Science Cited 29 time in Scopus
Authors

Kang, Sun-Woong; Yoon, Jung-Ro; Lee, Jae-Sun; Kim, Hak Jun; Lim, Hee-Won; Lim, Hong Chul; Park, Jung-Ho; Kim, Byung-Soo

Issue Date
2006-08
Publisher
VSP BV
Citation
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, Vol.17 No.8, pp.925-939
Abstract
The use of injectable scaffolding materials for in vivo tissue regeneration has raised great interest because it allows cell implantation through minimally invasive surgical procedures. Previously, we showed that poly(lactic-co-glycolic acid) (PLGA) microspheres can be used as an injectable scaffold to engineer cartilage in the subcutaneous space of athymic mice. The purpose of this study was to determine whether PLGA microspheres can be used as an injectable scaffold to regenerate hyaline cartilage in the osteochondral defects of rabbit knees. A full-thickness wound to the patellar groove of the articular cartilage was made in the knees of rabbits. Rabbit chondrocytes were mixed with PLGA microspheres and injected immediately into these osteochondral wounds. Both chondrocyte transplantations without PLGA microspheres and culture medium injections without chondrocytes served as controls. Sixteen weeks after implantation, chondrocytes implanted using the PLGA microspheres formed white cartilaginous tissues. Histological scores indicating the extent of the cartilaginous tissue repair and the absence of degenerative changes were significantly higher in the experimental group than in the control groups (P < 0.05). Histological analysis by a hematoxylin and eosin stain of the group transplanted with microspheres showed thicker and better-formed cartilage compared to the control groups. Alcian blue staining and Masson's trichrome staining indicated a higher content of the major extracellular matrices of cartilage, sulfated glycosaminoglycans and collagen in the group transplanted with microspheres than in the control groups. In addition, immunohistochemical analysis showed a higher content of collagen type 11, the major collagen type in cartilage. in the microsphere transplanted group compared to the control groups. In the group transplanted without microspheres, the wounds were repaired with fibro-cartilaginous tissues. This study demonstrates the feasibility of using PLGA microspheres as an injectable scaffold for cartilage regeneration in a rabbit model of osteochondral wound repair.
ISSN
0920-5063
URI
https://hdl.handle.net/10371/204405
DOI
https://doi.org/10.1163/156856206777996862
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area biomaterials, nanomedicine, regenerative medicine

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share