Publications

Detailed Information

Small intestinal submucosa as a small-caliber venous graft: A novel model for hepatocyte transplantation on synthetic biodegradable polymer scaffolds with direct access to the portal venous system

Cited 31 time in Web of Science Cited 38 time in Scopus
Authors

Stephen S Kim; Satoshi Kaihara; Mark S Benvenuto; Byung-Soo Kim; David J Mooney; Joseph P Vacanti

Issue Date
1999-01
Publisher
W B SAUNDERS CO
Citation
JOURNAL OF PEDIATRIC SURGERY, Vol.34 No.1, pp.124-128
Abstract
Background/Purpose: Hepatotrophic factors in the portal blood are critically important for the survival of heterotopically transplanted hepatocytes. Currently, no model exists for the implantation of hepatocytes on biodegradable polymer scaffolds with direct access to the portal blood. This study investigates the use of small intestinal submucosa (SIS) as a small-caliber venous conduit that may be used for the implantation of tissue-engineered liver. Methods: SIS was prepared from segments of rat jejunum and implanted as a venous conduit between the portal vein and inferior vena cava in 26 heparinized Lewis rats. Venograms were performed periodically, and the grafts were harvested at various time-points and examined by scanning electron microscopy (SEM) and histology. Von Willebrand Factor (vWF) staining was performed to assess endothelialization. Results: Five rats died of technical complications. Seventeen of 21 rats (81%) maintained patent grafts at the time of death up to 8 weeks. Venograms demonstrated patent grafts at 3 and 8 weeks. SEM results showed a smooth luminal surface with endothelial-like cells by 3 weeks. Histology demonstrated a confluent luminal endothelial monolayer, absence of thrombus, and neovascularization in the SIS graft. VWF staining results were positive, confirming the growth of endothelial cells on the luminal surface. In preliminary studies, implantation of hepatocytes seeded on biodegradable polymer tubes into the SIS graft demonstrated clusters of viable cells after 2 days. Conclusions: Rat SIS can be prepared readily, maintains high patency as a small-caliber venous graft, and may be a useful model for the transplantation of tissue-engineered liver with access to the portal circulation. J Pediatr Surg 34: 124-128. Copyright (C) 1999 by W.B. Saunders Company.
ISSN
0022-3468
URI
https://hdl.handle.net/10371/204479
DOI
https://doi.org/10.1016/S0022-3468(99)90241-5
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area biomaterials, nanomedicine, regenerative medicine

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share