Publications

Detailed Information

Poster: Home-based, on-device non-invasive obstructive sleep apnea monitoring with infrared video

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

Choi, You Rim; Eo, Gyeongseon; Yoon, Wonhyuck; Lee, Hyojin; Jang, Haemin; Kim, Dong Yoon; Shin, Hyun-Woo; Kim, Hyung-Sin

Issue Date
2024-06
Publisher
Association for Computing Machinery, Inc
Citation
MOBISYS 2024 - Proceedings of the 2024 22nd Annual International Conference on Mobile Systems, Applications and Services, pp.708-709
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep disorder, affecting approximately one billion individuals globally. In this study, we aim to address the limitations of Polysomnography (PSG), the gold standard for OSA diagnosis, by developing SlAction, a non-intrusive system that utilizes infrared videos for OSA detection in daily sleep settings. Considering the privacy-sensitive nature of sleep videos, SlAction is designed to analyze data directly on the camera-capturing device, eliminating the need to transmit video data to a server. With the collaboration of clinical experts, we extensively analyze the largest dataset worldwide that we collected, establishing correlations between OSA events and human motions during sleep. Our novel approach achieved an OSA prediction performance with an F1 score of 0.88. Notably, even when running on a low-spec CPU, our SlAction operates approximately 75 times faster than previous work evaluated on high-performance GPU servers.
URI
https://hdl.handle.net/10371/204936
DOI
https://doi.org/10.1145/3643832.3661433
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • Graduate School of Data Science
Research Area Distributed machine learning, Edge, Mobile AI

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share