Publications

Detailed Information

Nondestructive freshness evaluation of mackerel fish using Vis/NIR hyperspectral imaging and multivariate analysis

DC Field Value Language
dc.contributor.authorRyu, Jiwon-
dc.contributor.authorHong, Suk-Ju-
dc.contributor.authorPark, Seongmin-
dc.contributor.authorKim, Eungchan-
dc.contributor.authorLee, Chang-Hyup-
dc.contributor.authorKim, Sungjay-
dc.contributor.authorIsmail, Azfar-
dc.contributor.authorLee, ChangSug-
dc.contributor.authorKim, DongHee-
dc.contributor.authorJo, Cheorun-
dc.contributor.authorKim, Ghiseok-
dc.date.accessioned2024-08-08T01:19:19Z-
dc.date.available2024-08-08T01:19:19Z-
dc.date.created2024-05-29-
dc.date.created2024-05-29-
dc.date.issued2024-09-
dc.identifier.citationJournal of Food Engineering, Vol.377, p. 112086-
dc.identifier.issn0260-8774-
dc.identifier.urihttps://hdl.handle.net/10371/205024-
dc.description.abstractNondestructive freshness evaluation models for chub mackerel (Scomber japonicus) fillets were developed using visible/near-infrared (Vis/NIR) hyperspectral imaging and multivariate regression analysis. Total 96 mackerel samples were investigated during 6 days of storage under five different conditions for measurement of pH, total volatile basic nitrogen (TVB-N), and K values along with acquisition of hyperspectral images. With partial least squares regression (PLSR) and support vector regression (SVR) along with wavelength selection method using Variables Importance in Projection (VIP) scores, performances of PLSR, VIP-PLSR, SVR, and VIP-SVR models were evaluated and compared. The VIP-PLSR models showed the best performance for predicting the freshness indicators, with R2 values of 0.86, 0.86, and 0.91 for pH, TVB-N, and K values, respectively. Furthermore, it was shown that the identification and removal of noise pixels from the hyperspectral data based on correlation analysis was effective in improving the regression results.-
dc.language영어-
dc.publisherElsevier Ltd-
dc.titleNondestructive freshness evaluation of mackerel fish using Vis/NIR hyperspectral imaging and multivariate analysis-
dc.typeArticle-
dc.identifier.doi10.1016/j.jfoodeng.2024.112086-
dc.citation.journaltitleJournal of Food Engineering-
dc.identifier.wosid001232772900001-
dc.identifier.scopusid2-s2.0-85190737568-
dc.citation.startpage112086-
dc.citation.volume377-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorJo, Cheorun-
dc.contributor.affiliatedAuthorKim, Ghiseok-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusNITROGEN TVB-N-
dc.subject.keywordPlusVARIABLE SELECTION-
dc.subject.keywordPlusSCATTER-CORRECTION-
dc.subject.keywordPlusK-VALUE-
dc.subject.keywordPlusQUALITY-
dc.subject.keywordPlusSPOILAGE-
dc.subject.keywordPlusCLASSIFICATION-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusMUSCLE-
dc.subject.keywordPlusPH-
dc.subject.keywordAuthorHyperspectral imaging-
dc.subject.keywordAuthorK value-
dc.subject.keywordAuthorMackerel-
dc.subject.keywordAuthorMultivariate analysis-
dc.subject.keywordAuthorpH-
dc.subject.keywordAuthorTotal volatile basic nitrogen (TVB-N)-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Agriculture and Life Sciences
  • Department of Agricultural Biotechnology
Research Area Analysis, evaluation, and development of quality and process of animal-origin foods, Development of non-thermal process for improvement of safety of animal-origin foods, Understanding of muscle biology and cultured muscle production

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share