Publications

Detailed Information

Real-time dual prediction of intradialytic hypotension and hypertension using an explainable deep learning model

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

Yun, Donghwan; Yang, Hyun-Lim; Kim, Seong Geun; Kim, Kwangsoo; Kim, Dong Ki; Oh, Kook-Hwan; Joo, Kwon Wook; Kim, Yon Su; Han, Seung Seok

Issue Date
2023-10
Publisher
Nature Publishing Group
Citation
Scientific Reports, Vol.13 No.1, p. 18054
Abstract
Both intradialytic hypotension (IDH) and hypertension (IDHTN) are associated with poor outcomes in hemodialysis patients, but a model predicting dual outcomes in real-time has never been developed. Herein, we developed an explainable deep learning model with a sequence-to-sequence-based attention network to predict both of these events simultaneously. We retrieved 302,774 hemodialysis sessions from the electronic health records of 11,110 patients, and these sessions were split into training (70%), validation (10%), and test (20%) datasets through patient randomization. The outcomes were defined when nadir systolic blood pressure (BP) < 90 mmHg (termed IDH-1), a decrease in systolic BP ≥ 20 mmHg and/or a decrease in mean arterial pressure ≥ 10 mmHg (termed IDH-2), or an increase in systolic BP ≥ 10 mmHg (i.e., IDHTN) occurred within 1 h. We developed a temporal fusion transformer (TFT)-based model and compared its performance in the test dataset, including receiver operating characteristic curve (AUROC) and area under the precision-recall curves (AUPRC), with those of other machine learning models, such as recurrent neural network, light gradient boosting machine, random forest, and logistic regression. Among all models, the TFT-based model achieved the highest AUROCs of 0.953 (0.952–0.954), 0.892 (0.891–0.893), and 0.889 (0.888–0.890) in predicting IDH-1, IDH-2, and IDHTN, respectively. The AUPRCs in the TFT-based model for these outcomes were higher than the other models. The factors that contributed the most to the prediction were age and previous session, which were time-invariant variables, as well as systolic BP and elapsed time, which were time-varying variables. The present TFT-based model predicts both IDH and IDHTN in real time and offers explainable variable importance.
ISSN
2045-2322
URI
https://hdl.handle.net/10371/205183
DOI
https://doi.org/10.1038/s41598-023-45282-1
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Medicine
  • Department of Medicine
Research Area Nephrology, Transplantation, Urology

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share