Publications

Detailed Information

Tunable Nanoparticle Stability in Concentrated Polymer Solutions On the Basis of the Temperature Dependent Solvent Quality

Cited 18 time in Web of Science Cited 19 time in Scopus
Authors

Kwon, Na Kyung; Park, Chang Seo; Lee, Chae Han; Kim, Yung Sam; Zukoski, Charles F.; Kim, So Youn

Issue Date
2016-03
Publisher
AMER CHEMICAL SOC
Citation
MACROMOLECULES, Vol.49 No.6, pp.2307-2317
Abstract
The ability to control the degree of particle dispersion in polymer solutions has been a long-standing subject in colloidal science. While a generally accepted principle is that nonadsorbing polymers can induce depletion attraction, which is mostly temperature independent, the effects of adding adsorbing polymers are still poorly understood. In this study, we investigated the effects of adsorbing polymers on the temperature-dependent stability of nanoparticles. The model systems consisted of silica nanoparticles in low-molecular weight polyethylene glycol) solutions. The detailed microstructures were determined with small-angle X-ray and neutron scattering measurements, while the dynamics of the temperature-dependent microstructures of the nanoparticles and polymers were probed with diffusing-wave spectroscopy. It was found that a poor solvent for polymer could drive adsorbed polymers to leave the particle substrate and return to the bulk solution due to a complicated interaction with surface, while the loss of the steric layer causes the nanoparticles to aggregate at elevated temperatures.
ISSN
0024-9297
URI
https://hdl.handle.net/10371/218127
DOI
https://doi.org/10.1021/acs.macromol.5b02798
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share