Publications
Detailed Information
In-sensor multilevel image adjustment for high-clarity contour extraction using adjustable synaptic phototransistors
Cited 0 time in
Web of Science
Cited 0 time in Scopus
- Authors
- Issue Date
- 2025-05
- Publisher
- AMER ASSOC ADVANCEMENT SCIENCE
- Citation
- SCIENCE ADVANCES, Vol.11 No.18
- Abstract
- Robotic vision has traditionally relied on high-performance yet resource-intensive computing solutions, which necessitate high-throughput data transmission from vision sensors to remote computing servers, sacrificing energy efficiency and processing speed. A promising solution is data compaction through contour extraction, visualizing only the outlines of objects while eliminating superfluous backgrounds. Here, we introduce an in-sensor multilevel image adjustment method using adjustable synaptic phototransistors, enabling the capture of well-defined images with optimal brightness and contrast suitable for achieving high-clarity contour extraction. This is enabled by emulating dopamine-mediated neuronal excitability regulation mechanisms. Electrostatic gating effect either facilitates or inhibits time-dependent photocurrent accumulation, adjusting photo-responses to varying lighting conditions. Through excitatory and inhibitory modes, the adjustable synaptic phototransistor enhances visibility of dim and bright regions, respectively, facilitating distinct contour extraction and high-accuracy semantic segmentation. Evaluations using road images demonstrate improvement of both object detection accuracy and intersection over union, and compression of data volume.
- ISSN
- 2375-2548
- Files in This Item:
- There are no files associated with this item.
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.