Publications

Detailed Information

Molded polyethylene glycol microstructures for capturing cells within microfluidic channels

Cited 165 time in Web of Science Cited 199 time in Scopus
Authors

Khademhosseini, Ali; Yeh, Judy; Jon, Sangyong; Eng, George; Suh, Kahp Y.; Burdick, Jason A.; Langer, Robert

Issue Date
2004
Publisher
Royal Society of Chemistry
Citation
Lab Chip, 2004, 4, 425-430
Keywords
LIVING CELLSDEVICESCHIPFABRICATIONCOLI
Abstract
The ability to control the deposition and location of adherent and non-adherent cells within microfluidic devices is beneficial for the development of micro-scale bioanalytical tools and high-throughput screening systems. Here, we introduce a simple technique to fabricate poly(ethylene glycol) (PEG) microstructures within microfluidic channels that can be used to dock cells within pre-defined locations. Microstructures of various shapes were used to capture and shear-protect cells despite medium flow in the channel. Using this approach, PEG microwells were fabricated either with exposed or non-exposed substrates. Proteins and cells adhered within microwells with exposed substrates, while non-exposed substrates prevented protein and cell adhesion (although the cells were captured inside the features). Furthermore, immobilized cells remained viable and were stained for cell surface receptors by sequential flow of antibodies and secondary fluorescent probes. With its unique strengths in utility and control, this approach is potentially beneficial for the development of cell-based analytical devices and microreactors that enable the capture and real-time analysis of cells within microchannels, irrespective of cell anchorage properties.
ISSN
1473-0197
Language
English
URI
https://hdl.handle.net/10371/6272
DOI
https://doi.org/10.1039/b404842c
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share