Browse

Balancing Uplink and Downlink under Asymmetric Traffic Environments Using Distributed Receive Antennas

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
Sohn, Illsoo; Lee, Byong Ok; Lee, Kwang Bok
Issue Date
2008-10
Publisher
Institute of Electronics, Information and Communication Engineers (IEICE)
Citation
IEICE Trans. Commun., vol.E91-B, no.10, pp.3141-3148, Oct. 2008
Keywords
TDDasymmetric trafficcrossed-slot interferencedistributed antenna systemWCDMAIEEE802.16eWiBro
Abstract
Recently, multimedia services are increasing with the widespread use of various wireless applications such as web brosers, real-time video, and interactive games, which results in traffic asymmetry between the uplink and downlink. Hence, time division duplex (TDD) systems which provide advantages in efficient bandwidth utilization under asymmetric traffic environments have become one of the most important issues in future mobile cellular systmes. It is known that two types of intercell interference, referred to as crossed-slot interference, additionally arise in TDD systems; the performances of the uplink and downlink transmissions are degraded by BS-to-BS crossed-slot interference and MS-to-MS crossed-slot interference, respectively. The resulting performance unbalance between the uplink and downlink makes network deployment severely inefficient. Previous works have proposed intelligent time slot allocation algorithms t0 mitigate the corssed-slot interference problem. However, they require centralized control, which causes large signaling overhead in the network. In this paer, we propose to change the shape of the cellular structure itself. The conventional cellular structure is easily transformed into the proposed cellular structure with distributed receive antennas (DRAs). We set up statistical Markov chain traffic model and analyze the bit error performances of the conventional cellular structure and proposed cellular structure under asymmetric traffic environments. Numerical results show that the uplink and downlink performances of the proposed cellular structure become balanced with the proper number of DRAs and thus the proposed cellular structure is notably cost-effective in network deployment compared to the conventional cellular structure. As a result, extending the conventional cellular strucuture into the poposed cellular structure with DRAs is a remarkably cost-effective solution to support asymmetric traffic environments in future mobile cellular systems.
ISSN
0916-8516
Language
English
URI
http://search.ieice.org/bin/summary.php?id=e91-b_10_3141&category=B

https://hdl.handle.net/10371/7482
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Computer Science and Engineering (컴퓨터공학부)Journal Papers (저널논문_컴퓨터공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse