Browse

Feasibility of Automated Quantification of Regional Disease Patterns Depicted on High-Resolution Computed Tomography in Patients with Various Diffuse Lung Diseases

Cited 25 time in Web of Science Cited 30 time in Scopus
Authors
Park, Sang Ok; Seo, Joon Beom; Kim, Namkug; Park, Seong Hoon; Park, Bum-Woo; Lee, Youngjoo; Kang, Suk-Ho; Lee, Jeongjin; Sung, Yu Sub; Lee, Young Kyung
Issue Date
2012-03-05
Publisher
KOREAN RADIOLOGICAL SOC
Citation
KOREAN JOURNAL OF RADIOLOGY; Vol.10 5; 455-463
Keywords
Diffuse interstitial lung diseaseComputed tomography (CT), quantitativeComputed tomography (CT), high resolutionComputed tomography (CT), image processing
Abstract
Objective: This study was designed to develop an automated system for quantification of various regional disease patterns of diffuse lung diseases as depicted on high-resolution computed tomography (HRICT) and to compare the performance of the automated system with human readers. Materials and Methods: A total of 600 circular regions-of-interest (ROIs), 10 pixels in diameter, were utilized. The 600 ROIs comprised 100 ROIs that represented six typical regional patterns (normal, ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation). The ROIs were used to train the automated classification system based on the use of a Support Vector Machine classifier and 37 features of texture and shape. The performance of the classification system was tested with a 5-fold cross-validation method. An automated quantification system was developed with a moving ROI in the lung area, which helped classify each pixel into six categories. A total of 92 HRCT images obtained from patients with different diseases were used to validate the quantification system. Two radiologists independently classified lung areas of the same CT images into six patterns using the manual drawing function of dedicated software. Agreement between the automated system and the readers and between the two individual readers was assessed. Results: The overall accuracy of the system to classify each disease pattern based on the typical ROIs was 89%. When the quantification results were examined, the average agreement between the system and each radiologist was 52% and 49%, respectively. The agreement between the two radiologists was 67%. Conclusion: An automated quantification system for various regional patterns of diffuse interstitial lung diseases can be used for objective and reproducible assessment of disease severity.
ISSN
1229-6929
Language
English
URI
https://hdl.handle.net/10371/75339
DOI
https://doi.org/10.3348/kjr.2009.10.5.455
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Industrial Engineering (산업공학과)Journal Papers (저널논문_산업공학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse