Publications

Detailed Information

Development of Microelectrode Arrays for Artificial Retinal Implants Using Liquid Crystal Polymers

Cited 66 time in Web of Science Cited 68 time in Scopus
Authors

Lee, Seung Woo; Seo, Jong-Mo; Ha, Seungmin; Kim, Eui Tae; Kim, Sung June; Chung, Hum

Issue Date
2009-12
Publisher
ASSOC RESEARCH VISION OPHTHALMOLOGY INC
Citation
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE; Vol.50 12; 5859-5866
Abstract
PURPOSE. To develop a liquid crystal polymer (LCP)-based, long-term implantable, retinal stimulation microelectrode array using a novel fabrication method. METHODS. The fabrication process used laser micromachining and customized thermal-press bonding to produce LCP-based microelectrode arrays. To evaluate the fabrication process and the resultant electrode arrays, in vitro reliability tests and in vivo animal experiments were performed. The in vitro tests consisted of electrode site impedance recording and electrode interlayer adhesion monitoring during accelerated soak tests. For in vivo testing, the fabricated electrode arrays were implanted in the suprachoroidal space of rabbit eyes. Optical coherence tomography (OCT) and electrically evoked cortical potentials (EECPs) were used to determine long-term biocompatibility and functionality of the implant. RESULTS. The fabricated structure had a smooth, rounded edge profile and exhibited moderate flexibility, which are advantageous features for safe implantation without guide tools. After accelerated soak tests at 75 degrees C in phosphate-buffered saline, the electrode sites showed no degradation, and the interlayer adhesion of the structure showed acceptable stability for more than 2 months. The electrode arrays were safely implanted in the suprachoroidal space of rabbit eyes, and EECP waveforms were recorded. Over a 3-month postoperative period, no chorioretinal inflammation or structural deformities were observed by OCT and histologic examination. CONCLUSIONS. LCP-based flexible microelectrode arrays can be successfully applied as retinal prostheses. The results demonstrate that such electrode arrays are safe, biocompatible, and mechanically stable and that they can be effective as part of a chronic retinal implant system. (Invest Ophthalmol Vis Sci. 2009; 50: 5859-5866) DOI:10.1167/iovs.09-3743
ISSN
0146-0404
Language
English
URI
https://hdl.handle.net/10371/77930
DOI
https://doi.org/10.1167/iovs.09-3743
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share