Browse

Human dopamine receptor nanovesicles for gate-potential modulators in high-performance field-effect transistor biosensors

DC Field Value Language
dc.contributor.authorPark, Seon Joo-
dc.contributor.authorSong, Hyun Seok-
dc.contributor.authorKwon, Oh Seok-
dc.contributor.authorChung, Ji Hyun-
dc.contributor.authorLee, Seung Hwan-
dc.contributor.authorAn, Ji Hyun-
dc.contributor.authorAhn, Sae Ryun-
dc.contributor.authorLee, Ji Eun-
dc.contributor.authorYoon, Hyeonseok-
dc.contributor.authorPark, Tai Hyun-
dc.contributor.authorJang, Jyongsik-
dc.creator박태현-
dc.date.accessioned2014-07-24T02:44:22Z-
dc.date.available2014-07-24T02:44:22Z-
dc.date.issued2014-07-
dc.identifier.citationScientific Reports, Vol.4 No.4342, pp. 1-8-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://hdl.handle.net/10371/92614-
dc.description.abstractThe development of molecular detection that allows rapid responses with high sensitivity and selectivity remains challenging. Herein, we demonstrate the strategy of novel bio-nanotechnology to successfully fabricate high-performance dopamine (DA) biosensor using DA Receptor-containing uniform-particle-shaped Nanovesicles-immobilized Carboxylated poly(3,4-ethylenedioxythiophene) (CPEDOT) NTs (DRNCNs). DA molecules are commonly associated with serious diseases, such as Parkinson's and Alzheimer's diseases. For the first time, nanovesicles containing a human DA receptor D1 (hDRD1) were successfully constructed from HEK-293 cells, stably expressing hDRD1. The nanovesicles containing hDRD1 as gate-potential modulator on the conducting polymer (CP) nanomaterial transistors provided high-performance responses to DA molecule owing to their uniform, monodispersive morphologies and outstanding discrimination ability. Specifically, the DRNCNs were integrated into a liquid-ion gated field-effect transistor (FET) system via immobilization and attachment processes, leading to high sensitivity and excellent selectivity toward DA in liquid state. Unprecedentedly, the minimum detectable level (MDL) from the field-induced DA responses was as low as 10 pM in real-time, which is 10 times more sensitive than that of previously reported CP based-DA biosensors. Moreover, the FET-type DRNCN biosensor had a rapid response time (< 1 s) and showed excellent selectivity in human serum.en
dc.language.isoenen
dc.publisherNature Publishing Groupen
dc.subject자연과학en
dc.titleHuman dopamine receptor nanovesicles for gate-potential modulators in high-performance field-effect transistor biosensorsen
dc.typeArticle-
dc.contributor.AlternativeAuthor박선주-
dc.contributor.AlternativeAuthor송현석-
dc.contributor.AlternativeAuthor권오석-
dc.contributor.AlternativeAuthor정지현-
dc.contributor.AlternativeAuthor이승환-
dc.contributor.AlternativeAuthor안지현-
dc.contributor.AlternativeAuthor안새련-
dc.contributor.AlternativeAuthor이지은-
dc.contributor.AlternativeAuthor윤현석-
dc.contributor.AlternativeAuthor박태현-
dc.contributor.AlternativeAuthor장정식-
dc.identifier.doi10.1038/srep04342-
dc.description.srndOAIID:oai:osos.snu.ac.kr:snu2014-01/102/0000002410/5-
dc.description.srndSEQ:5-
dc.description.srndPERF_CD:SNU2014-01-
dc.description.srndEVAL_ITEM_CD:102-
dc.description.srndUSER_ID:0000002410-
dc.description.srndADJUST_YN:Y-
dc.description.srndEMP_ID:A002014-
dc.description.srndDEPT_CD:458-
dc.description.srndCITE_RATE:2.927-
dc.description.srndDEPT_NM:화학생물공학부-
dc.description.srndSCOPUS_YN:Y-
dc.description.srndCONFIRM:Y-
dc.identifier.rimsid39504-
dc.identifier.srnd2014-01/102/0000002410/5-
dc.type.rimsART-
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
Files in This Item:
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse