Publications

Detailed Information

Engineering titanium dioxide nanostructures for enhanced lithium-ion storage

Cited 97 time in Web of Science Cited 97 time in Scopus
Authors

Lee, Dae-Hyeok; Lee, Byoung-Hoon; Sinha, Arun K.; Park, Jae-Hyuk; Kim, Min-Seob; Park, Jungjin; Shin, Heejong; Lee, Kug-Seung; Sung, Yung-Eun; Hyeon, Taeghwan

Issue Date
2018-12
Publisher
American Chemical Society
Citation
Journal of the American Chemical Society, Vol.140 No.48, pp.16676-16684
Abstract
Various kinds of nanostructured materials have been extensively investigated as lithium ion battery electrode materials derived from their numerous advantageous features including enhanced energy and power density and cyclability. However, little is known about the microscopic origin of how nanostructures can enhance lithium storage performance. Herein, we identify the microscopic origin of enhanced lithium storage in anatase TiO2 nanostructure and report a reversible and stable route to achieve enhanced lithium storage capacity in anatase TiO2. We designed hollow anatase TiO2 nanostructures composed of interconnected similar to 5 nm sized nanocrystals, which can individually reach the theoretical lithium storage limit and maintain a stable capacity during prolonged cycling (i.e., 330 mAh g(-1) for the initial cycle and 228 mAh g(-1) for the 100th cycle, at 0.1 A g(-1)). In situ characterization by X-ray diffraction and X-ray absorption spectroscopy shows that enhanced lithium storage into the anatase TiO2 nanocrystal results from the insertion reaction, which expands the crystal lattice during the sequential phase transition (anatase TiO2 -> Li0.55TiO2 -> LiTiO2). In addition to the pseudocapacitive charge storage of nanostructures, our approach extends the utilization of nanostructured TiO2 for significantly stabilizing excess lithium storage in crystal structures for long-term cycling, which can be readily applied to other lithium storage materials.
ISSN
0002-7863
URI
https://hdl.handle.net/10371/165877
DOI
https://doi.org/10.1021/jacs.8b09487
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Chemistry, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share