Browse
S-Space
College of Engineering/Engineering Practice School (공과대학/대학원)
Dept. of Chemical and Biological Engineering (화학생물공학부)
Journal Papers (저널논문_화학생물공학부)
Responsive assembly of upconversion nanoparticles for pH-activated and near-infrared-triggered photodynamic therapy of deep tumors
- Authors
- Li, Fangyuan ; Du, Yang ; Liu, Jianan ; Sun, Heng ; Wang, Jin ; Li, Ruiqing ; Kim, Dokyoon ; Hyeon, Taeghwan ; Ling, Daishun
- Issue Date
- 2018-08
- Citation
- Advanced Materials, Vol.30 No.35, p. 1802808
- Keywords
- nanoassembly ; photodynamic therapy ; pH-responsive ; theranostics ; upconversion nanoparticle
- Abstract
- Upconversion nanoparticle (UCNP)-mediated photodynamic therapy has shown great effectiveness in increasing the tissue-penetration depth of light to combat deep-seated tumors. However, the inevitable phototoxicity to normal tissues resulting from the lack of tumor selectivity remains as a major challenge. Here, the development of tumor-pH-sensitive photodynamic nanoagents (PPNs) comprised of self-assembled photosensitizers grafted pH-responsive polymeric ligands and UCNPs is reported. Under neutral pH conditions, photosensitizers aggregated in the PPNs are self-quenched; however, upon entry into a tumor microenvironment with lower pH, the PPNs not only exhibit enhanced tumor-cell internalization due to charge reversal but also are further disassembled into well-dispersed nanoparticles in the endo/lysosomes of tumor cells, enabling the efficient activation of photosensitizers. The results demonstrate the attractive properties of both UCNP-mediated deep-tissue penetration of light and high therapeutic selectivity in vitro and in vivo.
- ISSN
- 0935-9648
- Files in This Item: There are no files associated with this item.
- Appears in Collections:
- College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Chemical Convergence for Energy and Environment (에너지환경 화학융합기술전공)Journal Papers (저널논문_에너지환경 화학융합기술전공)
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.