Browse

Multi-modal transfection agent based on monodisperse magnetic. nanoparticles for stem cell gene delivery and tracking

Cited 56 time in Web of Science Cited 56 time in Scopus
Issue Date
2014-08
Citation
Biomaterials, Vol.35 No.25, pp.7239-7247
Keywords
Multimodal imagingMagnetic resonance imagingCell trackingStem cellsCatechol
Abstract
Directing the controlled differentiation and tracking of stem cells is essential to achieve successful stem cell therapy. In this work, we describe a multi-modal (MR/optical) transfection agent (MTA) for efficient gene delivery and cell tracking of human mesenchymal stem cells (hMSCs). The MTA was synthesized through a facile two-step approach with 1) ligand exchange of a catechol-functionalized polypeptide (CFP) and 2) chemical immobilization of fluorescence labelled cationic polymer via aminolysis reaction. Cationic polymer-immobilized MIAs with size of 40 nm exhibit greatly enhanced colloidal stability in aqueous solution. In addition, the MTAs were capable of binding DNA molecules for transfection. The MTA/pDNA complex showed relatively good transfection efficiency in hMSCs (compared to the commercial transfection agent, Lipofectamine) and good biocompatibility. MTA-treated hMSCs were successfully visualized after transplantation via MR and optical imaging system over 14 days. These studies highlight the challenges associated with the potential advantages of designing multi-modal nanostructured materials as tools for genetic materials delivery and cell-tracking in stem cell therapy. (C) 2014 Elsevier Ltd. All rights reserved.
ISSN
0142-9612
URI
https://hdl.handle.net/10371/166098
DOI
https://doi.org/10.1016/j.biomaterials.2014.05.010
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Chemical Convergence for Energy and Environment (에너지환경 화학융합기술전공)Journal Papers (저널논문_에너지환경 화학융합기술전공)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse