Publications

Detailed Information

Copper-indium-selenide quantum dot-sensitized solar cells

DC Field Value Language
dc.contributor.authorYang, Jiwoong-
dc.contributor.authorKim, Jae-Yup-
dc.contributor.authorYu, Jung Ho-
dc.contributor.authorAhn, Tae-Young-
dc.contributor.authorLee, Hyunjae-
dc.contributor.authorChoi, Tae-Seok-
dc.contributor.authorKim, Young-Woon-
dc.contributor.authorJoo, Jin-
dc.contributor.authorKo, Min Jae-
dc.contributor.authorHyeon, Taeghwan-
dc.date.accessioned2021-01-31T04:12:06Z-
dc.date.available2021-01-31T04:12:06Z-
dc.date.created2020-07-30-
dc.date.created2020-07-30-
dc.date.issued2013-12-
dc.identifier.citationPhysical Chemistry Chemical Physics, Vol.15 No.47, pp.20517-20525-
dc.identifier.issn1463-9076-
dc.identifier.other109655-
dc.identifier.urihttps://hdl.handle.net/10371/171762-
dc.description.abstractWe present a new synthetic process of near infrared (NIR)-absorbing copper-indium-selenide (CISe) quantum dots (QDs) and their applications to efficient and completely heavy-metal-free QD-sensitized solar cells (QDSCs). Lewis acid-base reaction of metal iodides and selenocarbamate enabled us to produce chalcopyrite-structured CISe QDs with controlled sizes and compositions. Furthermore, gram-scale production of CISe QDs was achieved with a high reaction yield of similar to 73%, which is important for the commercialization of low-cost photovoltaic (PV) devices. By changing the size and composition, electronic band alignment of CISe QDs could be finely tuned to optimize the energetics of the effective light absorption and injection of electrons into the TiO2 conduction band (CB). These energy-band-engineered QDs were applied to QDSCs, and the quantum-confinement effect on the PV performances was clearly demonstrated. Our best cell yielded a conversion efficiency of 4.30% under AM1.5G one sun illumination, which is comparable to the performance of the best solar cells based on toxic lead chalcogenide or cadmium chalcogenide QDs.-
dc.language영어-
dc.publisherRoyal Society of Chemistry-
dc.titleCopper-indium-selenide quantum dot-sensitized solar cells-
dc.typeArticle-
dc.contributor.AlternativeAuthor김영운-
dc.contributor.AlternativeAuthor현택환-
dc.identifier.doi10.1039/c3cp54270j-
dc.citation.journaltitlePhysical Chemistry Chemical Physics-
dc.identifier.wosid000327249700013-
dc.identifier.scopusid2-s2.0-84887924699-
dc.citation.endpage20525-
dc.citation.number47-
dc.citation.startpage20517-
dc.citation.volume15-
dc.identifier.sci000327249700013-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorKim, Young-Woon-
dc.contributor.affiliatedAuthorHyeon, Taeghwan-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusMULTIPLE EXCITON GENERATION-
dc.subject.keywordPlusSEMICONDUCTOR NANOCRYSTALS-
dc.subject.keywordPlusSOLID-STATE-
dc.subject.keywordPlusELECTROPHORETIC DEPOSITION-
dc.subject.keywordPlusPHOTOVOLTAIC RESPONSE-
dc.subject.keywordPlusCUINSE2 NANOCRYSTALS-
dc.subject.keywordPlusELECTRON INJECTION-
dc.subject.keywordPlusORGANIC-DYES-
dc.subject.keywordPlusTHIN-FILM-
dc.subject.keywordPlusEFFICIENCY-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Chemistry, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share