Publications

Detailed Information

Copper-indium-selenide quantum dot-sensitized solar cells

Cited 62 time in Web of Science Cited 65 time in Scopus
Authors

Yang, Jiwoong; Kim, Jae-Yup; Yu, Jung Ho; Ahn, Tae-Young; Lee, Hyunjae; Choi, Tae-Seok; Kim, Young-Woon; Joo, Jin; Ko, Min Jae; Hyeon, Taeghwan

Issue Date
2013-12
Publisher
Royal Society of Chemistry
Citation
Physical Chemistry Chemical Physics, Vol.15 No.47, pp.20517-20525
Abstract
We present a new synthetic process of near infrared (NIR)-absorbing copper-indium-selenide (CISe) quantum dots (QDs) and their applications to efficient and completely heavy-metal-free QD-sensitized solar cells (QDSCs). Lewis acid-base reaction of metal iodides and selenocarbamate enabled us to produce chalcopyrite-structured CISe QDs with controlled sizes and compositions. Furthermore, gram-scale production of CISe QDs was achieved with a high reaction yield of similar to 73%, which is important for the commercialization of low-cost photovoltaic (PV) devices. By changing the size and composition, electronic band alignment of CISe QDs could be finely tuned to optimize the energetics of the effective light absorption and injection of electrons into the TiO2 conduction band (CB). These energy-band-engineered QDs were applied to QDSCs, and the quantum-confinement effect on the PV performances was clearly demonstrated. Our best cell yielded a conversion efficiency of 4.30% under AM1.5G one sun illumination, which is comparable to the performance of the best solar cells based on toxic lead chalcogenide or cadmium chalcogenide QDs.
ISSN
1463-9076
URI
https://hdl.handle.net/10371/171762
DOI
https://doi.org/10.1039/c3cp54270j
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Chemistry, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share