Publications

Detailed Information

Co-culture with bifidobacterium catenulatum improves the growth, gut colonization, and butyrate production of faecalibacterium prausnitzii: In vitro and in vivo studies

Cited 48 time in Web of Science Cited 52 time in Scopus
Authors

Kim, Heejung; Jeong, Yunju; Kang, Sini; You, Hyun Ju; Ji, Geun Eog

Issue Date
2020-05
Publisher
MDPI AG
Citation
Microorganisms, Vol.8 No.5, p. 788
Abstract
Faecalibacterium prausnitzii is a major commensal bacterium in the human gut. It produces short-chain fatty acids that promote intestinal health. However, the bacterium is extremely oxygen-sensitive, making it difficult to develop as a probiotic. To facilitate practical application of F. prausnitzii, we investigated factors that affect its growth and mammalian gut colonization. We evaluated cross-feeding interactions between F. prausnitzii and seven Bifidobacterium strains, and the anti-inflammatory properties of bacterial metabolites produced in co-culture, in vitro and in vivo. Co-culture of F. prausnitzii and Bifidobacterium catenulatum, with fructooligosaccharides as an energy source, resulted in the greatest viable cell-count and butyrate production increases. Further, the co-culture supernatant reduced the amount of proinflammatory cytokines produced by HT-29 cells and RAW 264.7 macrophages, an effect that was similar to that of butyrate. Furthermore, feeding mice both Faecalibacterium and Bifidobacterium enhanced F. prausnitzii gut colonization. Finally, feeding the co-culture supernatant decreased interleukin 8 levels in the colon and increased butyrate levels in the cecum in the dextran sodium sulfate-induced colitis mouse model. These observations indicate that the Faecalibacterium-Bifidobacterium co-culture exerts an anti-inflammatory effect by promoting F. prausnitzii survival and short-chain fatty acid production, with possible implications for the treatment of inflammatory bowel disease.
ISSN
2076-2607
URI
https://hdl.handle.net/10371/200091
DOI
https://doi.org/10.3390/microorganisms8050788
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Human Ecology
  • Department of Food and Nutrition
Research Area Biochemistry & Molecular Biology, Food Science & Technology, Microbiology, 미생물학, 분자생물학, 식품공학

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share