Publications

Detailed Information

Bactericidal effect of 266 to 279 nm wavelength UVC-LEDs for inactivation of Gram positive and Gram negative foodborne pathogenic bacteria and yeasts

DC Field Value Language
dc.contributor.authorKim, Do-Kyun-
dc.contributor.authorKim, Soo-Ji-
dc.contributor.authorKang, Dong-Hyun-
dc.date.accessioned2024-05-08T04:21:25Z-
dc.date.available2024-05-08T04:21:25Z-
dc.date.created2018-01-10-
dc.date.created2018-01-10-
dc.date.issued2017-07-
dc.identifier.citationFood Research International, Vol.97, pp.280-287-
dc.identifier.issn0963-9969-
dc.identifier.urihttps://hdl.handle.net/10371/201153-
dc.description.abstractRecently, UVC-LED technology has been validated as an alternative to eradiation with conventional mercury UV lamps. In this study, we sought to determine primary factors affecting reduction trends shown in several microorganisms. Four major foodborne pathogens (Escherichia coil 0157:H7, Salmonella spp. Listeria monocytogenes, Staphylococcus aureus) and spoilage yeasts (Saccharomyces pastorianus, Pichia membranaefaciens), important to the brewing industry, were inoculated onto selective and non-selective media in order to investigate reduction tendencies at 4 different peak wavelengths (266 to 279 nm). As irradiation dose increased, inactivation levels for every microorganism were enhanced, but there were different UV-sensitivities in Gram positive bacteria (GP), Gram negative bacteria (GN), and yeasts (Y). Loss of membrane integrity measured by propidium iodide (PI) increased as peak wavelength increased for every microorganism studied. Similar results were observed in membrane potential measured by DiBAC4(3). However, there were contrasting results which showed that greater DNA damage occurred at a lower peak wavelength as measured by Hoechst 33,258. The level of DNA damage was strongly related to trends of microbial inactivation. This study showed that even though membrane damage was present in every microorganism studied, DNA damage was the primary factor for inactivating microorganisms through UVC-LED treatment.-
dc.language영어-
dc.publisherElsevier BV-
dc.titleBactericidal effect of 266 to 279 nm wavelength UVC-LEDs for inactivation of Gram positive and Gram negative foodborne pathogenic bacteria and yeasts-
dc.typeArticle-
dc.identifier.doi10.1016/j.foodres.2017.04.009-
dc.citation.journaltitleFood Research International-
dc.identifier.wosid000403861500034-
dc.identifier.scopusid2-s2.0-85018286431-
dc.citation.endpage287-
dc.citation.startpage280-
dc.citation.volume97-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorKim, Do-Kyun-
dc.contributor.affiliatedAuthorKang, Dong-Hyun-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusESCHERICHIA-COLI O157H7-
dc.subject.keywordPlusENTERICA-SEROVAR TYPHIMURIUM-
dc.subject.keywordPlusULTRAVIOLET-LIGHT-
dc.subject.keywordPlusLISTERIA-MONOCYTOGENES-
dc.subject.keywordPlusFLOW-CYTOMETRY-
dc.subject.keywordPlusMINOR-GROOVE-
dc.subject.keywordPlusAPPLE JUICE-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusRADIATION-
dc.subject.keywordPlusDAMAGE-
dc.subject.keywordAuthorUVC-LED-
dc.subject.keywordAuthorWavelength-
dc.subject.keywordAuthorPathogens-
dc.subject.keywordAuthorGram-positive bacteria-
dc.subject.keywordAuthorGram-negative bacteria-
dc.subject.keywordAuthorYeast-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Human Ecology
  • Department of Food and Nutrition
Research Area Food Safety, UV LED, Water Disinfection

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share