Publications
Detailed Information
Screening of target-specific olfactory receptor and development of olfactory biosensor for the assessment of fungal contamination in grain Screening of target-specific olfactory receptor and development of olfactory biosensor for the assessment of fungal contamination in grain
Cited 25 time in
Web of Science
Cited 33 time in Scopus
- Authors
- Issue Date
- 2015-04
- Publisher
- Elsevier BV
- Citation
- Sensors and Actuators, B: Chemical, Vol.210, pp.9-16
- Abstract
- We herein report an integrated olfactory system to carbon nanotube platforms for biosensing applications. In particular, this system can be used for the real-time monitoring of fungal contamination in grain through detecting 1-octen-3-ol, which is specifically generated from contaminated grain. A specific human olfactory receptor (OR) that recognizes 1-octen-3-ol was found using a cyclic adenosine monophosphate (cAMP) response element (CRE)-reporter gene assay. Then, OR-containing nanovesicles were produced from human embryonic kidney (HEK)-293 cells. The nanovesicles, which generate olfactory signals using endogenous cellular components and over-expressed ORs, were integrated into single-walled carbon nanotubes field-effect transistors (SWNT-FETs). The nanovesicles and SWNT-FETs play roles in perceiving specific odorants, and in amplifying cellular signals, respectively. Thus, the nanovesicle-integrated device was able to detect 1-octen-3-ol with excellent sensitivity and selectivity, similar to the original olfactory system. This system can be effectively utilized for the real-time measurement of fungal contamination in grain. (C) 2014 Elsevier B.V. All rights reserved.
- ISSN
- 0925-4005
- Language
- English
- Files in This Item:
- There are no files associated with this item.
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.