Publications
Detailed Information
Physical Stimuli-Induced Chondrogenic Differentiation of Mesenchymal Stem Cells Using Magnetic Nanoparticles
Cited 50 time in
Web of Science
Cited 52 time in Scopus
- Authors
- Issue Date
- 2015-06
- Publisher
- John Wiley and Sons Ltd
- Citation
- Advanced healthcare materials, Vol.4 No.9, pp.1339-1347
- Abstract
- Chondrogenic commitments of mesenchymal stem cells (MSCs) require 3D cellular organization. Furthermore, recent progresses in bioreactor technology have contributed to the development of various biophysical stimulation platforms for efficient cartilage tissue formation. Here, an approach is reported to drive 3D cellular organization and enhance chondrogenic commitment of bone-marrow-derived human mesenchymal stem cells (BM-hMSCs) via magnetic nanoparticle (MNP)-mediated physical stimuli. MNPs isolated from Magnetospirillum sp. AMB-1 are endocytosed by the BM-hMSCs in a highly efficient manner. MNPs-incorporated BM-hMSCs are pelleted and then subjected to static magnetic field and/or magnet-derived shear stress. Magnetic-based stimuli enhance level of sulfated glycosaminoglycan (sGAG) and collagen synthesis, and facilitate the chondrogenic differentiation of BM-hMSCs. In addition, both static magnetic field and magnet-derived shear stress applied for the chondrogenic differentiation of BM-hMSCs do not show increament of hypertrophic differentiation. This MNP-mediated physical stimulation platform demonstrates a promising strategy for efficient cartilage tissue engineering.
- ISSN
- 2192-2640
- Language
- English
- Files in This Item:
- There are no files associated with this item.
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.